
Hamming error correcting code
generator and receiver

EEE 458: VLSI 2 Laboratory

Submitted By:

Name Student ID
Shadman Shahid 1506179

Shahed-E-Zumrat 1506097

Shamsuddin Ahamed 1506160

Didarul Islam 0806075

Department of Electrical and Electronic Engineering
Bangladesh University of Engineering and Technology

Abstract

In modern data communication systems, error free data transmission is essential
for fast and efficient communication. Errors may creep into a transmitted data due to
various reasons. However, a robust and efficient system, must be able to handle such
adversities properly. That is why error correcting codes are essential for an error-free
data communication system. In this regard, forward error correcting codes (FEC) are
better for a system, as the receiver system is prepared to handle errors. Moreover,
FECs prevent the redundancy of transmitting erroneous data back to the transmitters
end for correction. With this end in view, in this project, we have implemented a
simple error correcting scheme, based upon the least Hamming distance principle.

1

Contents
1 Introduction 4

1.1 Error correcting Codes . 5
1.2 Generating Codeword . 7
1.3 Correcting error in received word . 7

2 Behavioral Design: Coding the functional algorithm 9
2.0.1 Module enc . 10
2.0.2 Module dec . 11

3 Results 13
3.1 Code of Testbench . 13
3.2 Functional verification . 15
3.3 Schematic generation . 16
3.4 Timing, Power and Area considerations 18
3.5 Layout generation . 20
3.6 Design Rule Check . 22

4 Conclusion 22

List of Figures
1 Major steps in the ASIC design flow process. 4
2 A typical CAD system [1] . 5
3 Waveform showing the encoder block input and output. For d[2:0]=110,

the Cdata=110110. For d[2:0]=001, the Cdata=001110. 15
4 Waveform showing the decoder block input r and the error vector output,

e. For r[5:0] = 100011, e = 001000. For r[5:0] = 111110, e = 001000. . . . 15
5 Waveform showing the decoder block input r and output Cout. For r[5:0]

= 100011, Cdata = 101011. For r[5:0] = 000001, Cdata = 000001. 16
6 The schematic generated from the behavioral verilog code after RTL syn-

thesis. 16
7 The schematic of the encoder block generated from the behavioral verilog

code after RTL synthesis. 17
8 The schematic of the decoder block generated from the behavioral verilog

code after RTL synthesis. 18
9 The timing report and the respective slack time generated. 18
10 The timing details including delays and slack time of the different cells and

modules. The slack time here is shown to be less than the required time. . . 19

2

11 (a) The list of all the generated gates from the behavioral verilog code after
RTL synthesis. 35 gates are needed. (b) Area occupied by the gates in the
two modules. (c) Amount of switcing and leakage power consumed by the
two modules. 19

12 (a) The floorplan of the developed circuit developed after adding the power
mesh. Blue lines indicate metal 1 and yellow lines indicate metal 4. (b) The
layout of the Hamming-encoder-decoder IC after placing and optimizing
the standard cells. The routing wire lengths were minimized (c) The layout
of the IC after placing the clock tree. (d) Layout after placing metal fillers.
(e) Completed layout of the system displayed in Cadence Virtuoso Suite
after the necessary DRC checks. 20

13 : The DRC (Design Rule Check) window, showing zero errors and a com-
pleted process. 22

List of Tables
1 Some error correcting schemes and the respective (n,k) values. 6
2 The eight possible codewords for corresponding datawords. It can be noted

the the 3 most significant bits in each codeword is the same as the dataword. 13
3 The four received words from Fig. 5 tabulated along with the respective

error vectors and corrected codewords. It can be seen that the generated
codewords are obtained from table 2. the datawords are: 101, 011, 000 and
110. 13

3

1 Introduction
A very-large-scale-integration (VLSI) method dictates the process of forming a complex
logical circuit systems in an integrated circuit (IC). A standard VLSI design process, also
known as ’Application specific IC’ (ASIC) design process includes steps for system spec-
ification, system architectural design, algorithm development or behavioral design fol-
lowed by system synthesis including physical design (PnR - Place and Route), shown in
Fig. 1. For physical implementation further steps are needed for fabrication and packaging.
Among these steps, this report depicts a complete design process up until the layout gener-
ation and verification step, excluding fabrication and packaging steps. Cadence Innovus
Solution is used in this experiment as a design tool.

Figure 1: Major steps in the ASIC design flow process.

The front end design consists of a system specification step in which a design is concep-
tualized using a hardware description language (HDL) such as Verilog in this case. After
proper modelling and physical synthesis of the digital subsystem, the system is validated
by analyzing the timing diagram from NC-Sim in Cadence Inclusive Unified Simulator
(IUS). The flow chart of a typical computer aided design (CAD) system is given in Fig. 2
A proper testbench for testing the devised Verilog code has also been developed. // This
report is organized as follows: the latter part of Section 1 explains the algorithm and the-
ory of the function to be performed by our system. The behavioral design steps coded in
verilog, via the designated design software package, i.e., Cadence, are discussed in Sec-
tion 2. Section 3 documents and verifies the results. The timing performance, circuit level
and physical design steps are automatically performed by the design software are verified
in this section. The section ends with a summary of the key performance parameters and
device specifications. Section 4 presents an overview of the entire report.

4

Figure 2: A typical CAD system [1]

1.1 Error correcting Codes
A Forward error correcting code (FEC) is a coding scheme, where error in a transmitted
bit string can be corrected at the receiver end, without referring it back to the transmitter.
Thus, there isn’t any back propagation of information. Hence, this scheme is a ’Forward’
coding scheme. The key ideas behind this particular error correcting coding scheme is
based on the Hamming distance concept.

When transmitting data, the data is not transmitted in raw form. It is encoded and converted
to a longer string with more bits appended to it. A data bit string (known as dataword) is
converted to a unique codeword before being transmitted. A codeword (c) is the unit of bits
that can be decoded independently. Codeword of length n, transmits k bit dataword. So,
Codeword = Dataword + Check Digits. The number of check digits, m is thus n-k. This
is the kind of FEC known as block code.

5

Hamming distance between the two unmatched sequences is defined as the number of
unmatched digits between two bit sequences of equal length. In the field of error correct-
ing code, the number of mismatches between digits is in general known as distance. For
example 100110 and 111110 has a hamming distance of 2 as the 4th and 5th bits of the
two sequences do not match. Hamming space is the set of all possible 2N binary strings
of length N. The hamming space for N = 6 consists of 26 numbers ranging from 000000
to 111111. Thus, 100110 and 110011 are both members of the hamming space for N = 6.

For correcting a minimum of t errors the minimum distance between two unique code-
words, δmin, is given by δmin = 2t+1. The relation between the number of check digits m
and the length of the code word, n for t = 1, is given by

2m ≥
t

∑
j=0

(
n
j

)
2m ≥

(
n
0

)
+

(
n
1

)
(1)

This limit on m here, is known as the Hamming bound. Only for a few code schemes,
this inequality becomes an equality. Here, for k=3, after simplifying the initial expression
we obtain the following relation. Only for single error correcting codes (i.e., t = 1), this
condition is a necessary and sufficient condition.

2n−3 ≥ n+1

2n ≥ 8(n+1) (2)

Equation. 2 is satisfied for n = 6. For a 3 bit dataword, to detect a maximum of single error
(t = 1), the codeword must be of 6 bits. This particular scheme is a (6,3) coding scheme.
The following table shows different coding schemes with the codeword length, dataword
length and code rate.

n k Code Code Rate (n/k)
Single-error correcting, t=1
Minimum code separation 3

4 1 (4,1) 0.25

5 2 (5,2) 0.4
6 3 (6,3) 0.5
7 4 (7,4) 0.57

15 11 (15,11) 0.73

Table 1: Some error correcting schemes and the respective (n,k) values.

6

1.2 Generating Codeword
A 6 bit codeword is generated from a 3 bit dataword. The codeword is formed by a linear
combination of the data bits. An n bit long codeword c, and k bit long dataword d is defined
as follows.

c = (c1,c2, · · · ,cn)

d = (d1,d2, · · · ,dk)

For a special case in which codeword bits from c1 up to ck is same as corresponding databits
from d1 up to dk. For code word bits from ck+1 to cn are defined by a linear combination
of all the data bits, d1,d2, · · · ,dk. Such a scheme is known as systematic code. For a
dataword 110, a the generated codeword may be, 110111 where the check digits 111 are a
linear combination of the databits. To transform the dataword to a codeword a generator
matrix, G, is defined. This generator matrix is later used at the receiver end to decode the
received word and detect errors.

GGG =

1 0 0 · · · 0
0 1 0 · · · 0

...
0 0 0 · · · 1︸ ︷︷ ︸

Ik(k×k)

h11 h21 · · · hm1
h12 h22 · · · hm2

...
h1k h2k · · · hmk︸ ︷︷ ︸

P(k×m)

 (4)

The first portion of the generator matrix is an identity matrix of size k. The latter portion
of the generator Matrix (P(k×m)) generates those bits which form the check digits of the
code word. Thus, by knowing the dataword, we can calculate the check digits if we know
G.

ccc = dGGG

= d
[
Ik P

]
=
[
d dP

] (5)

Thus, for a given P matrix, we can generate the codeword c from a dataword.

1.3 Correcting error in received word
The received word of n bits is transformed, to give the error word of n bits. The error word
has 1s in those bits where there is an error and 0s for the correctly transmitted bits. For
example, if 001110 is a valid codeword, and 001100 is a received word, then the error word
e is 000010 as the 2nd least significant bit is erroneously transmitted. And, 001110 is the

7

corrected codeword. The received word r is transformed by the H matrix,

HHHT =

[
P
Im

]
where, P =

h11 h21 · · · hm1
h12 h22 · · · hm2

...
h1k h2k · · · hmk

 and Im =

1 0 0 · · · 0
0 1 0 · · · 0

...
0 0 0 · · · 1

On transforming r, a non-zero row vector s of length k, is generated. This vector is referred
to in literature as syndrome.

s = rHHHT (6)

The s bit string is compared with the rows of the matrix HHHT . The row to which s matches
completely, specifies the location of the error bit in r. Thus, a bitwise XOR operation
(i.e modulo -2 addition) between the error vector e and received word r will generate the
corrected codeword. This codeword is obtained from the least hamming distance between
the valid codewords from the received word.

8

2 Behavioral Design: Coding the functional algorithm
To implement an error correcting scheme, the designed IC could perform two major func-
tions.

1. Encoding: Generate desired codeword for a dataword, performed by module enc

2. Decoding: Spotting the error and finding the codeword from a received word, per-
formed by module dec

Thus, in developing the algorithm for this (6,3) systematic linear coding scheme, we had
to develop two modules, enc and dec for these two objectives. Thereafter, these two
modules were utilised in the top module Hamm_enc_dec. In the top module, the 3-
bit dataword d, 6-bit received word r and the clock was taken as inputs while Cdata,
Cout and e bit strings are the outputs. Cdata is the codeword generated by encoding the
dataword d. Cout and e are the corrected codeword and the error vector for the received
word r. The module below shows the top module code. Also, in this module the parameters
I0, I1, I2, P0 and P1 and P2 are initialized as the columns of the generator matrix G.
The HT matrix is also initialized from these vectors.

module Hamm enc dec (e , Cout , Cdata , r , d , c l k) ;

input c l k ;
input [2 : 0] d ;
input [5 : 0] r ;
output [5 : 0] e , Cout , Cdata ;
parameter [2 : 0] I0 = 4 , I1 = 2 , I2 = 1 ;
parameter [2 : 0] P0 = 3 ' b101 , P1 = 3 ' b011 , P2 = 3 ' b110 ;
wire [5 : 0] H3 , H2 , H1 ;

a s s i g n H3 = {P0 , I0 } ;
a s s i g n H2 = {P1 , I1 } ;
a s s i g n H1 = {P2 , I2 } ;

enc E1 (Cdata , d , I0 , I1 , I2 , P0 , P1 , P2 , c l k) ;
dec D1 (S , e , Cout , r , H3 , H2 , H1 , c l k) ;

endmodule

9

2.0.1 Module enc

This module took as input the 3 bit dataword, the generator matrix G and a clock input.
The generator matrix G for a (6,3) scheme is a (3× 6) matrix. So, each column of this
matrix was given as input in this module, (I0,I1,I2, P0, P1, P2). For a particular
dataword, d, the codeword c is generated as dG. For this project we used the following
matrix as G.

GGG =

1
0
0

(I0)

0
1
0

(I1)

0
0
1

(I2)

1
0
1

(P0)

0
1
1

(P1)

1
1
0

(P2)

(7)

For a particular d=110, we get the codeword

ccc = dGGG

=
[
1 1 0

]1
0
0

0
1
0

0
0
1

1
0
1

0
1
1

1
1
0

∴ ccc =

[
1 1 0 1 1 0

]
The above operation is implemented in the code snippet below.

module enc (Cen , d , I0 , I1 , I2 , P0 , P1 , P2 , c l k) ;
input c l k ;
input [2 : 0] d , I0 , I1 , I2 , P0 , P1 , P2 ;
output [5 : 0] Cen ;
reg [5 : 0] c ;

always@ (posedge c l k)
begin

c = { ˆ (d&I0) , ˆ (d&I1) , ˆ (d&I2) , ˆ (d&P0) , ˆ (d&P1) , ˆ (d&P2) } ;
end
a s s i g n Cen = c ;
endmodule

10

2.0.2 Module dec

The received word r is taken as input and is transformed into an error vector e by the HT

vector. The HT is obtained from the generator matrix as

HHHT =

[
P0 P1 P2
I0 I1 I2

]

=

1 0 1
0 1 1
1 1 0
1 0 0
0 1 0
0 0 1

Each of the columns of HT is taken as input. Thereafter the syndrome vector is obtained.
The calulation for a sample received word of r=100011 is given below.

s = rHHHT

=
[
1 0 0 0 1 1

]

1 0 1
0 1 1
1 1 0
1 0 0
0 1 0
0 0 1

∴ s =

[
1 1 0

]
For a received word of 100011 we obtain a syndrome of s=110. Now this syndrome
matches the 3rd row of HT .

HHHT =

1 0 1
0 1 1
1 1 0
1 0 0
0 1 0
0 0 1

This corresponds to an error vector, e=001000.Then the codeword closest (in terms of
Hamming distance) to this received word, is obtained as c=e⊕r=101011. Here, the XOR
operation is the same as modulo-2 addition. The code snippet of the decoder module is
given in the next page. This module finds the codeword which has the least hamming
distance from the received word.

11

module dec (e r r o r , c , r , H3 , H2 , H1 , c l k) ;
input c l k ;
input [5 : 0] r , H3 , H2 , H1 ;
output reg [2 : 0] S ;
output [5 : 0] e r r o r , c ;
reg [5 : 0] e = 6 ' b000000 ;

always@ (posedge c l k)
begin

S = { ˆ (r & H3) , ˆ (r & H2) , ˆ (r & H1) } ;

i f (S == {H3 [0] , H2 [0] , H1 [0] }) e = 6 ' b000001 ;
e l s e i f (S == {H3 [1] , H2 [1] , H1 [1] }) e = 6 ' b000010 ;
e l s e i f (S == {H3 [2] , H2 [2] , H1 [2] }) e = 6 ' b000100 ;
e l s e i f (S == {H3 [3] , H2 [3] , H1 [3] }) e = 6 ' b001000 ;
e l s e i f (S == {H3 [4] , H2 [4] , H1 [4] }) e = 6 ' b010000 ;
e l s e i f (S == {H3 [5] , H2 [5] , H1 [5] }) e = 6 ' b100000 ;
e l s e i f (S == 3 ' b111) e = 6 ' b100010 ;

end

a s s i g n e r r o r = e ;
a s s i g n c = e ˆ r ;
endmodule

12

3 Results
The encoder block transforms the dataword into codeword as per Eqn. 5. The transforma-
tion is depicted in the table Table 2. The transformation of some sample received words as
shown in Fig. 4 and Fig. 5 is given in Table 3.

d c
000 000000
001 001110
010 010011
011 011101
100 100101
101 101011
110 110110
111 111000

Table 2: The eight possible codewords for corresponding datawords. It can be noted the the 3 most
significant bits in each codeword is the same as the dataword.

r e c
100011 001000 101011
011100 000001 011101
000001 000001 000001
111110 001000 110110

Table 3: The four received words from Fig. 5 tabulated along with the respective error vectors and
corrected codewords. It can be seen that the generated codewords are obtained from table 2. the
datawords are: 101, 011, 000 and 110.

3.1 Code of Testbench
The code of the testbench is given below. the system works after the positive edge of the
clock pulse. The timing diagram is attached in the figures that follow. By, comparing the
timing diagram with the table mentioned in the preceding section.

13

module Hamm stim ;
reg [5 : 0] r ;
wire [2 : 0] d ;
Hamm enc dec H1 (e , Cout , Cdata , r , d) ;

i n i t i a l
begin
c l k = 1 ' b0 ;
f o r e v e r

begin
#5 c l k = ˜ c l k ;

end
end

i n i t i a l
begin

$shm open (”shm . db ” , 1) ;
$shm probe (”AS”) ;
#100 $ f i n i s h ;
#100 $ s h m c l o s e () ;

end
/ / s i m u l a t e t h e I n p u t S i g n a l s

i n i t i a l
begin
#0 r <=6 ' b000000 ;

d<=0;
#5 r <=6 ' b100011 ;

d<=3 ' b110 ;
#15 r =6 ' b011100 ;

d =3 ' b001 ;
f o r e v e r
begin
#20 r = ˜ r ;

d = ˜ d ;
end

end
endmodule

14

3.2 Functional verification
The verilog code of the system, is simulated and visualized using Sim Vision. The timing
diagram analysis shows that the code is working correctly and that is performs the required
functions correctly. The two blocks are verified by visualizing the timing diagrams in
Fig. 13 and 4. From the lookup table, we can find the corresponding codeword for a given

Figure 3: Waveform showing the encoder block input and output. For d[2:0]=110, the
Cdata=110110. For d[2:0]=001, the Cdata=001110.

dataword from Table 2. This is generated from the Eqn. 5. The encoder block has been
verified by checking whether the timing diagrams matches the data of this table.

Figure 4: Waveform showing the decoder block input r and the error vector output, e. For r[5:0] =
100011, e = 001000. For r[5:0] = 111110, e = 001000.

For the decoder block as well, table 2 to verify the results. Each of the received word is
transformed into a possible valid word, based on the least hamming distance between the
valid codeword and received word. Also, the (6,3) can correct at most 1 error. The timing
diagram for r and corrected codeword c generated is shown in Fig. 5.

15

Figure 5: Waveform showing the decoder block input r and output Cout. For r[5:0] = 100011,
Cdata = 101011. For r[5:0] = 000001, Cdata = 000001.

3.3 Schematic generation
The schematic of the designed system is given in the following figures. The two encod-
ing and decoding modules are represented by different blocks in Fig. 6. The upper block
represents the decoder block and the lower one represents the encoder block.

Figure 6: The schematic generated from the behavioral verilog code after RTL synthesis.

The three bit dataword is the serial input in the encoder block and the six bit codeword is
the serial output. The decoder block takes a six bit received word as the serial input and
gives the six bit error word and corrected codeword as the two serial outputs. The generator
matrix G and the HT matrix are given as parallel inputs to the encoder and decoder blocks
respectively. However, the code snippets of section 2 defined G and HT not as separate
inputs but as predefined parameters in the Hamm_enc_dec module. Thus in the circuit

16

level diagram, the parallel inputs specifying G and HT serve no function and hence are
not used in the logic circuit for serial processing. This has been done to keep the number
of inputs limited to the words to be transmitted and received. However, these parallel
inputs can easily be incorporated to the system by making the generator matrix – a system
parameter, a separate parallel input to the system. This will make the system more versatile
and customizable. The internal configuration of each of the two encoding and decoding
modules are given in figures 7 and 8. Both the blocks have the same clock.

Figure 7: The schematic of the encoder block generated from the behavioral verilog code after RTL
synthesis.

The encoder block as shown in Fig. 7, consists of 6 flip-flops, 3 D-type and 3 of SR-type.
Since the three MSBs of the output codeword is the same as the dataword, the three bits
of the dataword are taken as input to the three D-flip-flops. On the other hand the three
LSBs of the codeword are a pseudo-random combination the dataword bits, based upon
the latter part of the generator matrix. So, for the given generator matrix in Eqn. 7, the
dataword is fed to the three SR-flip-flops. Inverters are used to feed to the R-input. The
given configuration in the encoder block, without any more gates and logic elements is
enough for implementing the generator matrix, G given in Eqn. 7. The decoder block
is composed of a rather complicated network of sequential circuit. The six bit dataword
is processed by a combinational circuit before being fed to the block of flip-flops. The
sequential circuit implements, the logic function to generate the error word and corrected
word. The flip-flops ensure synchronous operation.

17

Figure 8: The schematic of the decoder block generated from the behavioral verilog code after RTL
synthesis.

Figure 9: The timing report and the respective slack time generated.

3.4 Timing, Power and Area considerations
The timings recorded by the software indicate a total time delay of 1151.50 ps for the input
data to propagate to the output end. This is the slack time generated from the timing infor-
mation table in Fig. 9. It can be seen that the XNOR gates have the highest contributions to
the total arrival delay time. From Fig. 13 we can observe that the slack time is less than the
required time. A total of 35 gates are used in the system, which occupy an area 89.94 µm.
A list of all the gates and their respective areas and associated technology library are given
in Fig. 11. The list mentions all the gates used in both the encoder and decoder modules.
Among all the gates the encoder module uses only three gates, occupying an area of 8.21
µm. The decoder module on the other hand occupies the rest of the total area mentioned in
Fig. 11.

18

Figure 10: The timing details including delays and slack time of the different cells and modules.
The slack time here is shown to be less than the required time.

(a)

(b)

(c)

Figure 11: (a) The list of all the generated gates from the behavioral verilog code after RTL synthe-
sis. 35 gates are needed. (b) Area occupied by the gates in the two modules. (c) Amount of switcing
and leakage power consumed by the two modules.

19

3.5 Layout generation
Physical design process begins with a ‘floorplan’. The floorplan estimates the area of major
units in the chip and defines their relative placements. The floorplan is essential to deter-
mine whether a proposed design will fit in the chip area budgeted and to estimate wiring
lengths and wiring congestion. The process is highly feedback driven as floorplans will of-
ten dictate change to the logic (and microarchitecture), which in turn inflict changes to the
floorplan. For complex designs, the floorplan is often hierarchically subdivided to describe
the functional blocks within the units. The challenge of floorplanning lies in estimating the
size of each unit without proceeding through a detailed design of the chip (which would
depend on the floorplan and wire lengths).

(a) (b)

(c) (d) (e)

Figure 12: (a) The floorplan of the developed circuit developed after adding the power mesh. Blue
lines indicate metal 1 and yellow lines indicate metal 4. (b) The layout of the Hamming-encoder-
decoder IC after placing and optimizing the standard cells. The routing wire lengths were minimized
(c) The layout of the IC after placing the clock tree. (d) Layout after placing metal fillers. (e) Com-
pleted layout of the system displayed in Cadence Virtuoso Suite after the necessary DRC checks.

20

To implement the layout of the synthesized logic circuit, from the gate level Verilog code,
the floorplan and pin placement were implemented as shown in Fig. 11. Power and ground
run horizontally in metal 1 (blue stripes). It is to be mentioned Metals are numbered ac-
cording to their hierarchy (lower number indicates deeper layer). These supply rails are
8λ wide (to carry more current) and are separated by 90λ center-to-center. The nMOS
transistors are placed in the bottom 40λ of the cell and the pMOS transistors are placed
in the top 50λ . Thus, cells can be connected by abutment with the supply rails and n-well
matching up. Substrate and well contacts are placed under the supply rails. Inputs and out-
puts are provided in metal 2, which runs vertically. Each cell is a multiple of 8λ in width
so that it offers an integer number of metal 2 tracks. Within the cell, poly is run vertically
to form gates and diffusion and metal1 are run horizontally, though metal1 can also be run
vertically to save space when it does not interfere with other connections. Cells are tiled in
rows. Each row is separated vertically by at least 10λ from the base of the previous row. In
a 2-level metal process, horizontal metal1 wires are placed in routing channels between the
rows. The number of wires that must be routed sets the height of the routing channels. As
we have observed in this experiment, layout is often generated with automatic place and
route tools.
The top layer consisted of vertical yellow stripes of metal 4 rails and a bottom layer having
horizontal stripes of metal 1 rails. The VDD and VSS rails are placed alternately. Each stripe
is of 0.16 µm width and spaced 0.84 µm apart. When more layers of metal are available,
routing takes place over the cells and routing channels may become unnecessary. For ex-
ample, in a 3-level metal process, metal3 is run horizontally on a 10λ pitch. Thus, 11
horizontal tracks can run over each cell. If this is sufficient to accommodate all of the hor-
izontal wires, the routing channels can be eliminated. Automatic synthesis and place and
route tools are good enough to map entire designs onto standard cells. Synthesized designs
tend to be somewhat slower than a good custom design, but they also take significantly less
design effort.
To supply the clock signal to the sequential components placed at different locations
throughout the IC, the clock routing need to be done efficiently. So, in routing the clock
signal to those components, the critical path has to be minimized efficiently, so that delay
does not occur. This is why, clock signal is routed to different locations within the IC, with
the least possible propagation delay. This scheme of clock distribution network within an
IC is known as a clock tree. includes the clocking circuitry and devices from clock source
to destination. The complexity of the clock tree and the number of clocking components
used depends on the hardware design. Since systems can have several ICs with different
clock performance requirements and frequencies, a “clock tree” refers to the various clocks
feeding those ICs. In this project the clock tree was synthesized and optimized automati-
cally.
Thereafter, filler cells were added and metal fillers were placed to occupy the empty loca-
tions within the wafer. Finally, after exporting the design to Cadence Layout XL, the layout
design was validated to correct any design violations.

21

3.6 Design Rule Check
Design rule checkers (DRC) verify that the layout satisfies design rules.There were two
violations in the geometry verification, which were resolved after adding filler cell and
exporting to virtuoso environment. No DRC errors were obtained in the final layout.

Figure 13: : The DRC (Design Rule Check) window, showing zero errors and a completed process.

4 Conclusion
This report presents a Hamming error correcting code generator and receiver. Hamming
codes are used in digital communication systems for error free data transmission. We have
implemented a proof of concept system that can correct a single bit error per six transmitted
bits. The parameters of the coding scheme are hard coded to keep the system simple and
minimal enough to display the basic working principle. However those system parameters
can be easily incorporated as system inputs. This report contains behavioral description of
the system in verilog, RTL synthesis step, physical design step and validation. Final design
of the error correcting logic system is verified to give us the final design.

References
[1] S. D. Brown, Fundamentals of Digital Logic with Verilog Design. Tata McGraw-Hill

Education, 2007.

22

	Introduction
	Error correcting Codes
	Generating Codeword
	Correcting error in received word

	Behavioral Design: Coding the functional algorithm
	Module enc
	Module dec

	Results
	Code of Testbench
	Functional verification
	Schematic generation
	Timing, Power and Area considerations
	Layout generation
	Design Rule Check

	Conclusion

